

m
Bearings 1 – Sliding bearings
elf lubricating, hydrostatic and Self lubricating, hydrostatic and hydrodynamic bearings

Dr Khaled Goher Coates B82 Khaled.goher@nottingham.ac.uk Adapted from the work of Dr Simon Lawes

Outlines

-
- ines
• The <u>Use</u> of Bearings
• <u>Overview</u> of Bearings
- ines
• The <u>Use</u> of Bearings
• <u>Overview</u> of Bearings
• Important <u>Terminologies</u> and <u>Cal</u> ■ The <u>Use</u> of Bearings
■ <u>Overview</u> of Bearings
■ Important <u>Terminologies</u> and <u>Calculations</u>
■ <u>Selection</u> of Bearings ■ The <u>Use</u> of Bearings
■ <u>Overview</u> of Bearings
■ Important <u>Terminologies</u> and <u>Cal</u>
■ <u>Selection</u> of Bearings
-

Learning Objectives

- **arning Objectives**

 Understand types and working principles of
 bearings bearings **Example 2018 19 and September 10 and September 10**
 Example 3 and sept
-
- **Example 20 Sylen Control Sylen Strains:**
 Example 30 Sylen Strains:
 Example 30 Sylen Strains:
 Example 30 Sylen Strains:
 Example:
 Example:
 Example:
 Example:
 Example:
 Example:
 Example:
 Example calculations
- ■Understand types and working principles of

■Understand the general use of bearings

■To discuss bearings terminologies and relevant

calculations

■To select a suitable type of bearings for various

applications and fun bearings
Understand the general use of bearings
To discuss bearings terminologies and r
calculations
To select a suitable type of bearings for
applications and functions

Bearings

deep groove ball bearing self-aligning roller bearing

cylindrical roller bearing

tapered roller bearing

needle roller bearing

bearing block

self-aligning ball bearing

thrust bearing

angular contact ball bearing

Bearings

arings
Used mainly to prevent or reduce friction forces (which generate heat that
wastes energy and result in wear) when two surface are in contact and one is
moving with respect to other. **arings**
Used mainly to prevent or reduce friction forces (which generate heat that
wastes energy and result in wear) when two surface are in contact and one is
so the function of the bearing is to guide the movement of on **arings**
Used mainly to prevent or reduce friction forces (which ge
wastes energy and result in wear) when two surface are in c
moving with respect to other.
So the <u>function of the bearing is to guide the movement of</u> **Solution 1998**
Used mainly to prevent or reduce friction forces (which generate heat that
wastes energy and result in wear) when two surface are in contact and one is
moving with respect to other.
So the <u>function of the </u> **arings**
Used mainly to prevent or reduce friction forces (which generate heat that
wastes energy and result in wear) when two surface are in contact and one is
moving with respect to other.
So the <u>function of the bearing</u>

Plain Journal Bearings

-
-
- **in Journal Bearings**

Journal bearings are used to support rotating

shafts which are loaded in radial direction.

The word journal is used for a shaft.

The bearing basically consist of an inserted of

some suitable mate Journal bearings are used to support rotating
shafts which are loaded in radial direction.
The word journal is used for a shaft.
The bearing basically consist of an inserted of
some suitable material which is fitted betwee

- support
- lubricated.

Bearing support

Plain Journal Bearings

**Solution Searings
The lubrication may be:
Hydrodynamic: consists of shaft rotating continuously in (National Searce Searce Searce Searce Searce Searce S
Prosesure degenerated in the cil as a result of the shaft rea The lubrication may be:**
The lubrication may be:
Hydrodynamic: consists of <u>shaft rotating continuously in oil</u>. The load is carried by
pressure degenerated in the oil as a result of the shaft rotating
Hydrostatic: is use **lain Journal Bearings**
The lubrication may be:
Hydrodynamic: consists of <u>shaft rotating continuously in oil</u>. The load is carried by
pressure degenerated in the oil as a result of the shaft rotating
Hydrostatic: is used

The lubrication may be:
The lubrication may be:
Hydrodynamic: consists of <u>shaft rotating continuously in oil</u>. The load is carried by
pressure degenerated in the oil as a result of the shaft rotating
Hydrostatic: is use **The lubrication may be:**
The lubrication may be:
Hydrodynamic: consists of <u>shaft rotating continuously in oil</u>. The load is carried by
pressure degenerated in the oil as a result of the shaft rotating
Hydrostatic: is use **at a high-enough pressure to left the shaft of the metal when**
The lubrication may be:
Hydrodynamic: consists of <u>shaft rotating continuously in oil</u>. The load is carried by
pressure degenerated in the oil as a result of The lubrication may be:

Hydrodynamic: consists of <u>shaft rotating continuously in oil</u>. The load is carried by

pressure degenerated in the oil as a result of the shaft rotating

Hydrostatic: is used to avoid excessive we Hydrodynamic: consists of <u>shaft rotating continuously in oil</u>. The load is carried by
pressure degenerated in the oil as a result of the shaft rotating
Hydrostatic: is used to avoid excessive wear at start-up occurred in

disulphide

bearing.

Bearing

Ball and Roller Bearings

- **Ill and Roller Bearings**
• With this type the <u>main load is transferred f</u>rom the rotating
shaft to its support by <u>rolling contact rather than sliding</u>
contact. and Roller Bearings
With this type the <u>main load is transferred f</u>rom the rotating
shaft to its support by <u>rolling contact rather than sliding</u>
contact. contact. **A roller Bearings**
 **A rolling the main load is transferred from the rotating shaft to its support by <u>rolling contact rather than sliding</u>

Contact.**
 A rolling element bearing consists of four main elements: an inner inner Realings

With this type the <u>main load is transferred</u> from the rotating

shaft to its support by <u>rolling contact rather than sliding</u>

<u>contact.</u>

A rolling element bearing consists of four main elements: an

inne With this type the <u>main load is transferred</u> from the rotating
shaft to its support by <u>rolling contact rather than sliding</u>
contact.
A rolling element bearing consists of four main elements: an
inner race, an outer race,
-

Bearings in Mechanical Systems

Bearings in Mechanical Systems

Bearings in Mechanical Systems

Generally we want low friction;

- •Gears •Seals
- •Valve stems

Forces/Moments at Bearings

Minimising unnecessary vibration transmission

Sometimes we want high friction

High friction

-
-
-

Sometimes the friction must be precise;

Bearing Selection

Bearing Selection

Rubbing Bearings **A - thermoplastics

A - thermoplastics

B - PTFE

C - PTFE + fillers Rubbing Bearings

A - thermoplastics

B - PTFE

C - PTFE + fillers

D - Porous bronze + PTF + Pb ubbing Bearings

A - thermoplastics

B - PTFE

C - PTFE + fillers

D - Porous bronze + PTF + Pb
E - PTFE-glass weave +**

-
-
-
-
- Publing Bearings

A thermoplastics

B PTFE

C PTFE + fillers

D Porous bronze + PTF + Pb

E PTFE-glass weave +

thermoset

F reinforced thermoset + thermoset
- A thermoplastics

B PTFE

C PTFE + fillers

D Porous bronze + PTF + Pb

E PTFE-glass weave +

thermoset

F reinforced thermoset +

MoS₂

G thermoset/carbon- $MoS₂$ B - PTFE

C - PTFE + fillers

D - Porous bronze + PTF + Pb

E - PTFE-glass weave +

thermoset

F - reinforced thermoset +

MoS₂

G - thermoset/carbon-

graphite + PTFE
- graphite + PTFE

 V_{max} limited by temperature rise

- pV Factor
• A measure of the bearing Factor
• A <u>measure of the bearing's ability to cope with</u>
frictional heat generation frictional heat generation Factor
• A <u>measure of the bearing's ability to cope with</u>
• Rapid wear occurs if operated at pV_{max}
• A practical value to <u>use is 50% of pV_{max}</u> • A <u>measure of the bearing's ability to cope with</u>

• Complete to the bearing's ability to cope with

• Frapid wear occurs if operated at pV_{max}

• A practical value to <u>use is 50% of pV_{max}</u>
	-
	-

pV factor

- pV factor = base design
- parameter
• pV = maximum allowable combination of nominal bearing pressure and relative sliding velocity. • pV factor = base design

• pV = maximum allowable

combination of nominal

bearing pressure and

relative sliding velocity.

• If pV is exceeded then

overheating, melting and

excessive wear or seizure

of the bear
- overheating, melting and excessive wear or seizure of the bearing will follow.

Radial Sliding Bearing (Journal)

Projected Area = bD Nominal pressure, P

$$
= \frac{F_{radial}}{bD}
$$

Wear depth $=$ Y Wear volume, $W = YbD$ Sliding speed, V

$$
= \omega \frac{D}{2}
$$

$$
\omega \text{ (rad/s)} = \frac{2\pi n (rpm)}{60}
$$

Axial Sliding Bearing (Thrust)

Thrust area =
$$
\frac{\pi}{4} (D^2 - d^2)
$$

\nNominal pressure

$$
=\frac{F_{axial}}{4}(D^2-d^2)
$$

Wear depth $=$ Y

Wear volume,
W =
$$
Y\frac{\pi}{4}(D^2 - d^2)
$$

Sliding speed 4 $\overrightarrow{D} + d$ $V = \omega$

Plain Rubbing Bearings (dry sliding)

-
- in Rubbing Bearings (dry sliding)
• Do not rely on liquid lubrication
• Usually polymeric & moulded to final shap in Rubbing Bearings (dry sliding)
• Do not rely on liquid lubrication
• Usually polymeric & moulded to final shape
• Dry lubricants, e.g. PTFE are added in Rubbing Bearings (dry sliding)
• Do not rely on liquid lubrication
• Usually polymeric & moulded to final shape
• Dry lubricants, e.g. PTFE are added
• Reinforcements added, e.g. glass fibre • Do not rely on liquid lubrication
• Usually polymeric & moulded to final shape
• Dry lubricants, e.g. PTFE are added
• Reinforcements added, e.g. glass fibre
• Pressure is limited by strength • Do not rely on liquid lubrication
• Usually polymeric & moulded to final sha
• Dry lubricants, e.g. PTFE are added
• Reinforcements added, e.g. glass fibre
• Pressure is limited by strength
• Speed is limited by temperat
- Usually polymeric & moulded to
• Dry lubricants, e.g. PTFE are add
• Reinforcements added, e.g. glas
• Pressure is limited by strength
• Speed is limited by temperature
-
-
-

Oil Lubricated Porous Bearings

- Lubricated Porous Bearings
• Manufactured from sintered metal powders
• Porous (to 30%) & oil impregnated Lubricated Porous Bearings
• Manufactured from sintered metal powders
• Porous (to 30%) & oil impregnated
• More porous = weaker, but higher speeds
-
-
- **Lubricated Porous Bearings
• Manufactured from sintered metal powders
• Porous (to 30%) & oil impregnated
• More porous = weaker, but higher speeds
• lubricant** needs to be <u>replenished</u> at regular • **lubricant** needs to be replenished at regular Manufactured from sintered metal po
Porous (to 30%) & oil impregnated
More porous = weaker, but higher sp
lubricant needs to be <u>replenished</u> at intervals - typically <u>1000 hours</u> of use

Material Properties

Combined Journal & Thrust

- **Figure 18 Semille Start Semille Start Semille Start Semille Start Start
The Start Start Start Start Start Start Start Start Start S** withstand radial & thrust forces (with a flange) • Bearings can be configured to

withstand radial & thrust forces (with

a flange)

• Their performances must be matched

(there is no point in thrust capacity

failing at 50% of the iournal capacity)
- (there is no point in thrust capacity failing at 50% of the journal capacity)

Other Important Factors

-
- **The Propier Important Factors
• Plain bearings wear
• Design for a given service** er Important Factors
• Plain bearings wear
• Design for a given service life (tolerated
wear volume) wear volume)

Wear

- **ear**
• Adjust bearing area and speed to give an acceptable
 Wear Factor K is provided by the manufacturer wear rate (& life) • Adjust bearing area and speed to give an acceptable

• Adjust bearing area and speed to give an acceptable

• <u>Wear Factor K</u> is provided by the manufacturer

• The wear factor is <u>the wear volume per unit applied</u>

<u>loa</u>
-
- Adjust bearing area and speed to give an acceptable

 Adjust bearing area and speed to give an acceptable

 <u>Wear Factor K</u> is provided by the manufacturer

 The wear factor is <u>the wear volume per unit applied</u>

<u>loa</u> load per unit sliding distance:
	- $-$ W is wear volume (m³))
	- $-$ F is bearing load (N)
	- $-$ V is the sliding velocity (m/s)
	- t is the elapsed time (s)

$$
K = \frac{W}{F V t}
$$

Manufacture

- **anufacture**
• Factors to be considered include <u>moulding</u>,
<u>machining, assembly, fastening, service</u>, etc.
• Nominal diametral clearance 1 um per mm is nufacture
Factors to be considered include <u>moulding,</u>
machining, assembly, fastening, service, etc.
Nominal diametral clearance 1 μm per mm is **anufacture**
• Factors to be considered include <u>moulding</u>,
<u>machining</u>, <u>assembly</u>, <u>fastening</u>, <u>service</u>, etc.
• Nominal diametral clearance 1 µm per mm is
common • Factors to be considered inclu

<u>machining</u>, <u>assembly</u>, <u>fastening</u>, <u>servi</u>

• Nominal diametral clearance 1 μ

common

• Manufacturing <u>Tolerance</u>

– close running fit (H8/f7)

– Free running (H9/d9) Factors to be considered include <u>Inachining</u>, <u>assembly</u>, fastening, service, eto
Nominal diametral clearance 1 µm pe
common
Manufacturing <u>Tolerance</u>
— close running fit (H8/f7)
— Free running (H9/d9)
- common -actors to be considered include

<u>machining</u>, <u>assembly, fastening, service</u>,

Nominal diametral clearance 1 µm

common

Manufacturing <u>Tolerance</u>

– close running (H9/d9)

– Free running (H9/d9)
- -
	-

Hydrodynamic Bearing

- **Hydrodynamic Bearing
• <u>Pressure builds in the lubricant</u>
as a response to the relative
motion** as a response to the relative motion • Pressure builds in the lubricant

• Pressure builds in the lubricant

as a response to the relative

motion

• Both journal and thrust bearings

may use this principle
- may use this principle
- $BUT \sim$ surfaces touch and rub at very low speeds

Circumferential pressure

Lubrication Regime

Lubrication Regimes

- **brication Regimes
• <u>Boundary Lubrication</u>
– continuous & extensive con
Lubricant is smeared assess**
	-
	- **Cation Regimes

	Soundary Lubrication

	 continuous & extensive contact

	 lubricant is smeared across the surfaces

	coefficient of friction (u) 0.05 to 0.2 Cation Regimes

	Soundary Lubrication

	- continuous & extensive contact

	- lubricant is smeared across the surfaces

	- coefficient of friction (μ) 0.05 to 0.2
- wear takes alase & limits life** Cation Regimes

	Boundary Lubrication

	— continuous & extensive contact

	— lubricant is smeared across the surfaces

	— coefficient of friction (μ) 0.05 to 0.2
— wear takes place & limits life
	-
	- **Example 18 Soundary Lubrication

	Continuous & extensive cont

	 lubricant is smeared across t

	 coefficient of friction (µ) 0.05

	 wear takes place & limits life**

rication Regimes
• <u>Mixed Iubrication</u>
- higher surface speeds?
- intermittent contact between aspe Lubrication Regimes

- -
- Ation Regimes

Sation Regimes

Mixed Iubrication

Aligher surface speeds?

Aligher contact between

Aligher contact between

Aligher contact between

Aligher contact between

Aligher support (ation Regimes

Mixed lubrication

- higher surface speeds?

- intermittent contact between asperities

- partial hydrodynamic support

- coefficient of friction (u) 0.004 to 0.10 Sation Regimes

Mixed Iubrication

- higher surface speeds?

- intermittent contact between asperitie

- partial hydrodynamic support

- coefficient of friction (μ) 0.004 to 0.10

- very high local pressures can create el
	-
	-
- Mixed lubrication

 higher surface speeds?

 intermittent contact between asperities

 partial hydrodynamic support

 coefficient of friction (µ) 0.004 to 0.10

 very high local pressures can create elastic deformat
 — higher surface speeds?
— intermittent contact between asperities
— partial hydrodynamic support
— coefficient of friction (μ) 0.004 to 0.10
— very high local pressures can create elastic deformation of
the surfaces- Ela the surface speeds?
The surface speeds?
Intermittent contact between asperities
partial hydrodynamic support
coefficient of friction (μ) 0.004 to 0.10
very high local pressures can create elastic deformation of
the surfac

Lubrication Regimes

- rication Regimes
• <u>hydrodynamic (film, thick film)</u>
– higher speeds
no contact between surfaces & no wear Ation Regimes
Androdynamic (film, thick
Andro speeds
- no contact between surface
Androimum film thickness of
	-
	-
	- Sation Regimes

	Sation (film, thick film)

	Thigher speeds

	Thigher speeds

	Thing the surfaces & no wear

	Thing the speed surface finish & telerances required

	The very seed surface finish & telerances required
	- Station Regimes

	Station (film, thick film)

	Thigher speeds

	Thigher speeds

	Thinimum film thickness of 8 μm to 20 μm

	There y good surface finish & tolerances required

	There of friction (ε) 0,002 to 0.01

	There of frict 1

	1

	1 Mydrodynamic (film, thick film)

	1 Mydrodynamic (film, thick film)

	1 Mydrod surface finish & tolerances required

	1 Mydrod surface finish & tolerances required

	1 Coefficient of friction (μ) 0.002 to 0.01 - higher speeds

	- higher speeds

	- no contact between surfaces & no wear

	- minimum film thickness of 8 μm to 20 μm

	- very good surface finish & tolerances required

	- coefficient of friction (μ) 0.002 to 0.01
	-

Sommerfeld Number (Bearing characteristic number)

- **by a symmum of the Universed Strains of the Characteristic number)**

 Viscosity η: high viscosity means lower speed film lubrication &

high friction (through shear)

 rotating speed n (radians): higher speed means eas high friction (through shear) **• Produce 15 Formulary Characteristic number**

• Viscosity **n**: high viscosity means lower speed film lubrication

high friction (through shear)

• <u>rotating speed n (radians):</u> higher speed means easier

establishment of **Characteristic number)**

• Viscosity n: high viscosity means lower speed film lubrication &

high friction (through shear)

• <u>rotating speed n (radians)</u>: higher speed means easier

establishment of film & more loss (she • Viscosity η : high viscosity means lower speed film lubrication &
high friction (through shear)

• <u>rotating speed n (radians):</u> higher speed means easier

establishment of film & more loss (shear rate)

• Bearing Pre
- establishment of film & more loss (shear rate)
-
- relates the parameters above with Radius, R and clearance, h

$$
h = \frac{\text{bearing diameter} - \text{ shaft diameter}}{2}
$$

$$
S = \left(\frac{R}{h}\right)^2 \frac{\eta n}{P}
$$

Petroff's Equation

roff's Equation
• <u>friction is predominantly due to shear</u>, which is
primarily a function of: gap, speed, viscosity primarily a function of: gap, speed, viscosity

$$
\mu = 2\pi^2 \frac{\eta n}{P} \frac{R}{h}
$$

• <u>friction is predominantly due to shear</u>, which is
primarily a function of: gap, speed, viscosity
 $\mu = 2\pi^2 \frac{\eta n}{P} \frac{R}{h}$
• This simple formula is good for lightly loaded
bearings bearings

Hydrodynamic Bearing Hydrodynamic bearing action relies on the creation of a pressure wedge **C Bearing**

ielies on the creation of

redge

• in thrust

– <u>load carrying capacity depends</u>

<u>on size, viscosity & speed</u> **Example 19 Septem**
Filies on the creation of
Primit and the capacity depends
The capacity depends on size, viscosity & speed Hydrodynam

Hydrodynamic bearing actic

a pressure

• in journal

– shaft moves off-axis Hydrodynamic

Hydrodynamic bearing action r

a pressure w

n journal

– shaft moves off-axis

F

- -
-
- on size, viscosity & speed

Journal Bearing

Load carrying capacity **Journal Beaution**
 Load carrying capacity

• for long bearings:
 $F = S r V R^2$

or long bearings:

\n
$$
F = S\eta V \frac{R^{2}}{h^{2}}
$$
\nes up with;

\n– Lubricant flow

\n– Lubricant viscosity

\n– Relative sliding speed

\n– Ratio of radius to clearance

Goes up with;

-
-
-
-

Thrust (Pad) Bearing

- $L =$ length of the bearing surface
- $V =$ sliding velocity
- η = oil viscosity
- h_{\min} and h_{\max} are the minimum and maximum separation between the sliding surfaces • $L =$ length of the bearing surface

• $V =$ sliding velocity

• $\eta =$ oil viscosity

• h_{\min} and h_{\max} are the minimum

and maximum separation

between the sliding surfaces

• n is given by:
 $n = \frac{h_{\max}}{h_{\min}} - 1$
-

$$
n = \frac{h_{\max}}{h_{\min}} - 1
$$

Note the
different
use of n
$$
F = 6 \eta \left[\frac{\text{Ln} (1 + n)}{n^2} - \frac{2}{n (2 + n)} \right] V \frac{L^2}{h_{\text{min}}^2}
$$

Bearings and Oil Passages in Engines

Oil Passages in Engines

Film Thickness

After Raimondi & Boyd

Friction

Temperature

- **The Structure**

viscosity and density of most lubricants are highly

temperature dependent

if the temperature rises then viscosity and **Derature**

viscosity and density of most lubricants

temperature dependent

if the temperature rises then <u>visc</u>
- **The Theorem School System**
 Exercise 1991
 **Exercise then viscosity and

Exercise then viscosity and**

<u>**Exercise then viscosity and**
 Exercise then viscosity and
 Exercise then School School School School School S</u> **Derature**
 Example 18 Senson Senson Senson Senson Senson Senson Sensity will decrease
 Example 20 Sensity will decrease
 As a bearing warms up the Sommerf
 As a bearing warms up the Sommerf
- viscosity and density of most lubricants are highly

temperature dependent

 if the temperature rises then <u>viscosity and</u>

<u>density will decrease</u>

 as a bearing warms up the Sommerfeld number

will decrease as visco viscosity and density of most lubricants are highly
temperature dependent
if the temperature rises then <u>viscosity and
density will decrease</u>
as a bearing warms up the Sommerfeld number
will decrease as viscosity decreases viscosity and density of most lubricants are highly
temperature dependent
if the temperature rises then <u>viscosity and
density will decrease</u>
as a bearing warms up the Sommerfeld number
will decrease as viscosity decreases • if the temperature rises then <u>viscosity and</u>
density will decrease
as a bearing warms up the Sommerfeld number
will decrease as viscosity decreases and the load
carrying capacity will also go down.
designing for stable
-

Summary

- Plain rubbing bearings are the simplest bearing and work well
for low speeds Wear is guaranteed to occur
- n**mary**
Plain rubbing bearings are the simplest bearing and wo
for low speeds Wear is guaranteed to occur
<u>Self lubricating bearings improve on the performance o</u>
rubbing bearings but require regular recharging ■ Self lubricating bearings improve on the performance of plain rubbing bearings but require regular recharging
- Hydrodynamic bearings offer near zero wear so long loads are moderate, the shaft remains in motion and lubricant is available
- Hydrodynamic bearings can provide good load capacity and
long life in a small space, but perform poorly with intermittent Plain rubbing bearings are the simplest bearing and work well
for low speeds – Wear is guaranteed to occur
Self lubricating bearings improve on the performance of plain
rubbing bearings but require regular recharging
Hydro motion or slow speeds Hydrodynamic bearings offer near

moderate, the shaft remains in mo

vailable

Hydrodynamic bearings can provid

ong life in a small space, but perfo

motion or slow speeds

Compared to rolling element bearing

– consume m France Triating Scrib Triating Contempt Triating Condenate, the shaft remains in motion and lubil
vailable
dividrodynamic bearings can provide good load ong life in a small space, but perform poorly wis
notion or slow spee varilable

Hydrodynamic bearings can provide good load capacity and

ong life in a small space, but perform poorly with intermittent

notion or slow speeds

Compared to rolling element bearings, sliding bearings

— consume Hydrodynamic bearings can provide good lo

ong life in a small space, but perform poorl

notion or slow speeds

Compared to rolling element bearings, slidi

– consume more energy

– can offer higher load bearing capacities
- Compared to rolling element bearings, sliding bearings
	-
	-
	-
	-

Rolling element bearings further reading

- **Rolling element bearings further reading

•** Shigley, J.E., Mische, C.R. and Budynas, R.G., 2003.
 Mechanical Engineering Design (7th International Edition),

McGraw-Hill (George Green Library TJ230 SHI) **olling element bearings further reading**
Shigley, J.E., Mische, C.R. and Budynas, R.G., 2003.
Mechanical Engineering Design (7th International Edition),
McGraw-Hill(George-Green-Library TJ230-SHI)
Neale, M.J. (Ed.), 199 **olling element bearings further reading**
Shigley, J.E., Mische, C.R. and Budynas, R.G., 2003.
Mechanical Engineering Design (7th International Edition),
McGraw-Hill (George Green Library TJ230 SHI)
Neale, M.J. (Ed.), 19
- **Rolling element bearings further reading**

 Shigley, J.E., Mische, C.R. and Budynas, R.G., 2003.
 Mechanical Engineering Design (7th International Edition),

McGraw-Hill (George Green Library TJ230 SHI)

 Neale, M.J. Heinemann (https://www.imeche.org.uk/imember/v_library.asp) • Shigley, J.E., Mische, C.R. and Budynas, R.G., 2003.
 Mechanical Engineering Design (7th International Edition),

McGraw-Hill (George Green Library TJ230 SHI)

• Neale, M.J. (Ed.), 1995 Ttribology Handbook, Butterworth Shigley, J.E., Mische, C.R. and Budynas, R.G., 2003.
Mechanical Engineering Design (7th International Edition),
McGraw-Hill (George Green Library TJ230 SHI)
Neale, M.J. (Ed.), 1995 Ttribology Handbook, Butterworth
Heineman
-
- http://www.skf.co.uk
- http://www.nsk.co.uk
- http://www.rotechconsulting.com/bearings sub2.htm

Plain bearings further reading

- Shigley, J.E., Mische, C.R. and Budynas, R.G., 2003. Mechanical Engineering Design (7th International Edition), McGraw-Hill (George Green Library TJ230 SHI)
- Neale, M.J. (Ed.), 1995 Ttribology Handbook, Butterworth Heinemann (https://www.imeche.org.uk/imember/v_library.asp) SHI)
Neale, M.J. (Ed.), 1995 T*tribology Handbook,*
Butterworth Heinemann
(<u>https://www.imeche.org.uk/imember/v_library.asp)</u>
R J Welsh , R.J., 1983. *Plain Bearing Design Handbook,*
Butterworths (George Green Library TJ10
- R J Welsh , R.J., 1983. Plain Bearing Design Handbook,

Hydrostatic bearings further reading

- **Hydrostatic bearings further reading
• Raimondi, A. and Boyd, J., 1958. A Solution for the Finite
Journal Bearing and Its Application to Analysis and Design,
Parts I, II, and III. Transactions of American Society of** Journal Bearing and Its Application to Analysis and Design, Parts I, II, and III. Transactions of American Society of Lubrication Engineers, Vol. 1, No. 1, in Lubrication Science and Technology, Pergamon, New York, 159-209. **Hydrostatic bearings further reading**

• Raimondi, A. and Boyd, J., 1958. A Solution for the Finite

Journal Bearing and Its Application to Analysis and Design,

Parts I, II, and III. Transactions of American Society of
 • Raimondi, A. and Boyd, J., 1958. A Solution for the Finite
Journal Bearing and Its Application to Analysis and Design,
Parts I, II, and III. Transactions of American Society of
Lubrication Engineers, Vol. 1, No. 1, in L
- Machine Component Design (Wiley International student edition), Wiley & Sons, Asia Pty
- Heinemann (https://www.imeche.org.uk/imember/v_library.asp)
- www.tribology-abc.com

Revision Questions

- vision Questions
• Why are hydrodynamic bearings no good for
railway wagon wheel bearings? railway wagon wheel bearings?
- **Wision Questions
• Why are hydrodynamic bearings no good for railway wagon wheel bearings?
• What is different to make hydrodynamic bearings good for engine bearings?** sion Questions

Why are hydrodynamic bearings no

railway wagon wheel bearings?

What is different to make hydrodynamic

good for engine bearings?

Wishingtherearings?
- What is different to make hydrodynamic bearings

 What is different to make hydrodynamic bearings

 Would a hydrodynamic bearing be appropriate for

 Would a hydrodynamic bearing be appropriate for

 a power generation rammay tragent wheel searings:
What is different to make hydrodynamic bearings
good for engine bearings?
Would a hydrodynamic bearing be appropriate for
a power generation turbine in a coal fired power
plant? plant?

nn
Bearings 1 – Sliding bearings
elf lubricating, hydrostatic and Self lubricating, hydrostatic and hydrodynamic bearings

End of Session